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Classification and Enumeration of Minimum (d, 1, 3)-Graphs

and Minimum (d, 2, 3)-Graphs
VICTOR KLEE AND HOWARD QUAIFE

University of Washington, Seattle, Washington

Boeing Airplane Company, Seattle, Washington

A (d,c,v)-gzggg is a c-connected graph of diameter = d
in which each node is of valence = v. The minimum order (number
of nodes) of such graphs is denoted by u(d,c,v), and a
minimum (d,c,v)-graph is one of minimum order. Each minimum
(d,c,v)-graph corresponds to an efficient way of arranging the
stations of a communication network so that if any ¢ -1
stations are incapacitated, the rest of the network is still
connected, and so that in case of breakdown or other difficulty,
each station can rely for assistance on preclsely v others
(see [2]).

The (d,c,v)—graphs and the function u<d,c,v) are defined by
replacing = with 2> 1in the above definitions. The functions
u(d,c,v) and u(d,c,v) are determined in (2] and [3] respectively.
The present paper classifies and counts the minimum (d,1,3)-graphs
and the minimum (d,2,5)-graphs, a task performed in [1] for the

minimum (d,3,3)-graphs.




THE CASE d s 4

The following can be established by a routine but tedious

division into cases. Details are left to the reader.

PROPOSITION For 1 s d s 4 the minimum (d, 1, 3)-graphs and

the minimum (d, 2, 3)-graphs are precisely those shown below.

(Figure 1 is to be inserted here)

Minimum (d,1,3)-graphs and minimum (d,2,3)-graphs for d s 4

It 1s assumed henceforth that 4 2 5, except where a

different inequality is explicitly stated.




DIAMOND STRINGS AND MINIMUM (d, 1, 3)-GRAPHS
A clasp and a diamond are the graphs shown below, where each
pendant edge is later to be combined with another such edge in

forming an ordinary undirected graph.

(Figure 2 is to be inserted here)

Clasp Diamond

The diamond string D(k) with k diamonds is formed by combining

two clasps and k diamonds in the manner shown below.

(Figure 3 is to be inserted here)

D(0) D(1)

(Figure 4 1is to be inserted here)
clasp k diamonds clasp

The diamond string D(k) with k diamonds

An enlarged clasp is one of the two graphs

(Figure 5 is to be inserted here)

Enlarged clasps

and a doubly enlarged clasp 1s one of the three graphs




(Figure 6 is to be inserted here)

Doubly enlarged clasps

An enlarged diamond 1s one of the two graphs

(Figure 7 1s to be inserted here)

Enlarged diamonds

and a doubly enlarged diamond is one of the two graphs

(Figure 8 is to be inserted here)

Doubly enlarged diamonds

THEOREM For integers 5 = 3j s 7 and k 2 0, uw(j + 3k,1,3) = 2j + 4k.

The unique minimum (5 + 3k, 1, 3)-graph 1s the diamond string

D(k) with k diamonds. The minimum (6 + 3k, 1, 3)-graphs are

the graphs formed from D(k) by enlarging one clasp or one diamond;

their number is 2 + k for even k and 3 + k for odd k. The

minimum (7 + 3k, 1, 3)-graphs-are the graphs formed from D(k)

by doubly enlarging one clasp, enlarging both clasps, enlarging one

clasp and one diamond, enlarging two diamonds, or doubly enlarging

one diamond; their number is 6 + 5k.+ [3k2/2].

Proof. Plainly
(1) w(d,c,v) z}:@,c,V’% with strict inequality when both d
and u<d,c,v) are odd,

because odd-valent graphs are of even order. That




(2) ple o+ 3k 1, °3) &2} + 4k
follows from (1) and the fact [2] [4] that ufd,1,3) =4 + 4 + [d4/3].
It is easily verified that D(k) and the graphs derived from it
have the indicated diameters and orders. Since they are plainly
connected and 3-valent, equality holds in (2). It remains to
show that for d 2 5 there are no other minimum (d,1,3)-graphs
and, having done that, to justify the formulas for the number of
such graphs.

Wath's 5 s jics T alloian0 s inand s td s =risapuge s Tet, G ~bera
minimum (d,1,3)-graph, let P = (xo,xl,...,xd) be a path of length
d Jolning the two nodes x. and x

0 d
let v and w [resp. y and z] be the other two nodes of G

of a diametral pair, and

adjacent to X [resp. xd]. Let

V'={v,w,xo,x1,x2}, X = {xi: 32 i sd -~ 3} LT {xd_2,xd_l,xd,y,z}

and let T [resp. Q] be the set of all nodes of G that have

not yet been named and have 3 [resp. < 3] neighbors in X. Let

Be IQUEL »uid,d,3) = (@ 5. § F k-5

and e = |X| =3+ 3k - 5.

Note that each node of X 1is jincident to a unique edge that is not

on the path P, and since P 1is a shortest path from Xy to X4

the edge in question always has i1ts other end in QuT. From

the shortness of F 1t follows also that

{(3) =2} &2 whenéver Xy, and x, have a common neighbor, and

(4) the neighbors of a node in T are three consecutive nodes in X.
If Jj =5 then m=k and e - 3k, whence Q 1is empty and

it follows from (4) that G has the spanning subgraph shown in

the next figure. But then plainly G 1is D(k).

i s D




(Figure 9 is to be inserted here)

Spanning subgraph of minimum (5+3k,1,3)-graph

We still must consider the two cases:
450 =)
) =, m
Define the multiplicity of a node of Q as the number of edges

5. moscd 4 e = 1 + 3k;

n

2 e, e =2 % 2k.

Joining it to X, and note that the total number of edges joining
Q. to X .18

3|Q| - 2 when (5) holds.
(7} o = 3|T)=e = 3(m - Q) =

3]Q] - 4 when (6) holds.
Note also the following consequences of P's shortness:
(8) no edge joins V to Z;
(9) if a node of G has a neighbor in V and also a neighbor
in Z then d =J =6, k = 0, and the neighbors are X, and
Xy respectively.

Now suppose (5) holds, whence by (7) the sequence of

multiplicities of the members of Q 1is (1) or (2,2). In
the first instance Q consists of a single node q, q has a
single neighbor in X, and q's other two neighbors belong to
VuZ. From (4) in conjunction with P's shortness it follows that
q's nelighbor in X 1is x3 or xd_3. We may assume it is the
former, whence G has the spanning subgraph shown in the next

figure.




(Figure 10 is to be inserted here)
Spanning subgraph of minimum (6+43k,1,3)-graph when Q = {q}

It is readily verified that X1 and. % have no common neighbor,

2
and since v and w are interchangeable we may assume one of the

following holds: x is adjacent to v and Xq Lo - dis X1 s

1
adjacent to q and X5 to w; X, is adjacent to v and X5

to w. The first case yields the first of the enlarged clasps
described earlier, and the other two cases both yield the second
of the enlarged clasps.

Now suppose (5) holds and Q's sequence of multiplicities is
{2,2). If a node u of VuZ 1s adjacent to Q 1t follows from
(3) in conjunction with P's shortness that u is X, or
Xq_0s which 1is quickly seen to be impossible. Hence the two
nodes of Q are neighbors, whence, calling again on (3) and

on P's shortness, we see that for some 1 with 3 <i<i+ 3 < 3 + 3k,G

has one of the two subgraphs shown in the next figure.

(Figure 11 is to be inserted here)

Possible subgraphs of minimum (6+3k,1,3)-graph when |[Q| = 2

It follows with the aid of (6} that L la 4@ miltiple-of 3 and
hence the above subgraphs correspond to the situation in which G
is obtained from a diamond chain by enlarging one diamond.

It was proved in the eceding two paragraphs that the minimum

(6+3k,1,3)-graphs are as claimed. Thelr number is also as claimed,




for there are (for a given k 2 0) two different isomorphism
types having an enlarged clasp and 2[k/21 +types having an
enlarged diamond, where [k/21 1is the smallest integer 2 k/2.
Only the case J = 7 remains.

If jJ =7 — that is, if (6) holds — Q's sequence of
multiplicities is limited by (7) to the following possibilities:
(2:0); s 9 T N i (2,2,2,2).

The analysis of these possibilities is similar to (though more
complicated than) the analysis provided above for the case
J = 6. Detalls are omitted, but the conclusion is that the mini-
mum (7+3k,1,3)-graphs are as claimed in the theorem. To see
that their number 1s as claimed, note that, in view of the numbers
of the various types of enlargements and the asymmetry of one of
the doubly enlarged diamonds., the number of minimum (7+3k,1,3)-
graphs having

a doubly enlarged clasp is 3;

two enlarged clasps 1is 3;

an enlarged clasp and an enlarged diamond is Uik;

a doubly enlarged diamond is [k/2]-+-k;

two enlarged diamonds of different types is

(K=1)e+e(k=2)otevoeetele=ek(k-1)/2;

two enlarged diamonds of the same type is 2s, where

: K2 K°
k even =9 s = (k=1) + (k=3) + e¢e¢e + 1 = g . [TT]
2 5 2
and k odd = s = (kel) + (k=3) + +os +:2-= 55—1.= [%?].

Hence the total number is

6 + 2k + 3k + /2] + 2(k%/2] = 6 + 5k + [3k°/2].




DEMON LADDERS AND MINIMUM (d, 2

For each positive integer k,

node-disjoint simple paths
adding k

with the vJ's
is matched with VJ’

and Vv (When k =1

K

two at vl.) For example, each

the following.

(Figure 12 is to

The two

A small end, a large end, and a

D e s
having two pendant edges. Note
small end.

(Figure 13 is to

Small end

A demon ladder with k

between two small ends in the manner shown below for

(ul,...
additional edges (the rungs) which
in such a way that
and also adding pendant

there are two pendant

Large end

3)-GRAPHS

Cy

a k-ladder 1s formed from two

,uk) and (71,...,vk) by

match the ui‘s

|1 - j] € 1 whenever u,

i
edges at Upsly,Vy
Uy and

3-ladder is i1smorphic to one of

edges at

be inserted here)

3-ladders
forked end are shown below, each

that each large end contains a

be inserted here)

Forked end

rungs in formed by placing a k-ladder

k= 2.

Note that a demon ladder may have a large end but is not required

to.




o

10

(Figure 14 is to be inserted here)

Demon ladder with two rungs
As follows from the theorem below, the minimum (5,2,3)-graphs
are precisely the above two demon ladders and the two graphs shown

below.

(Figure 15 is to be inserted here)

Other minimum (5,2,3)-graphs

THEOREM For all d, u(d,2,3) = 2d + 2. For d 2 4 the minimum

(d,2,3)-graphs are the demon ladders with d - 3 rungs and the

graphs obtalned from such demon ladders by replacing a large end

with a forked end or two large ends with forked ends. For

d 2 5 the number of minimum (d,2,3)-graphs is

ds
;_f(d -1y % %_f(Zd - lu_ (=1) "3,

where f(k) 1is the kth Fibonacci number.

Proof. It is easily verified that the demon ladders and
their derivatives are (d,2,3)-graphs, whence
(10) HW(d;2,3) s 24 ¢ 2.

Now suppose thata G is minimum (d,2,3)-graph with d 2> U4,
let {x,y} be a diametral pair of nodes, and let P = (x,pl,p2,..
and Q = (x,ql,qz,...,y) be a pair of independent paths from
x to y such that, among all such pairs, the sum of the lengths

of P and Q 1is a minimum. Plainly x [(resp. y] has a neighbor
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w [resp. 2] not in PuQ. Since each of P and Q has at
least d - 1 intermediate nodes, and since w #¥ z, 1t follows
with the aild of (10) that wu(d,2,3) = 24 + 2, P and Q are
both of length d, and w and 2z are the only nodes of G
not in PuQ. Thus G has the spanning subgraph shown in the
next figure and it remains only to consider the possibilities

for the remaining edges.

(Figure 16 1s to be inserted here)

Spanning subgraph of minimum (d,2,3)-graph

Plainly w's two neighbors other than x belong to
{pl,p2,ql,q2}. If w 1is adjacent to both p; and p, [resp.
a and q2] then all possibilities for the third neighbor of
ql[resp. pl] lead to contradictions and hence w's set of
neighbors is {x,pl,ql}, {x,pl,qz}, {x,pz,ql} or {x,p2,q2}.
In the first of these cases, w belongs to a small end, and
to a large end if {p2,q2} is an edge. The last three cases
imply respectively the adjacency of Py to a5 of Py to

a5, and of Py to ap» and hence lead to forked ends in the

manner shown below.

(Figure.17 is to be inserted here)

Three ways of obtaining a forked end

Similar considerations apply to 2z's neilghbors. Since the

shortness of P and Q 1implies |1 - J| € 1 whenever py or
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ay is adjacent to pJ or qj’ it is now clear that the
minimum (d,2,3)-graphs are precisely as described in the Theorem.
It remains only to count the number of iscmorphism types of such
graphs.

Let f(k) denote the number of ordered partitions of k

into 1's and 2's — that is, the number of sequences
b X
(a1’°"’ab) such that a, e 1.2} Tor all 4 and I, a; = k.

To see that f(k) 1s the kth Fibonacei number, note that
£O1) =1, £(2) = 2. and

(11) f(k) = f(k - 1) + £(k -~ 2)

because f(k-1) [resp. f(k-2)] 1is the number of sequences
(al,...,ab) of 1%s-and 2's such that Z? 8 = k and
a; = 1 (resp. By % 2]. Let s(k) denote the number of

partitions, among those counted by f(k), ¢that are symmetric

(equal to their own reverses) and note that

(12) when k 1is odd, s(k) = f(E—g—l);
(13) When k 1is even s(k) = £(§) + f(% - 1) = £(5 + 1).

For each ordered partition a = (al,...,ab) of. Sk Anto
1's. and 2's,. . 1let La denote the k-ladder formed from two
node-disjoint simple paths by Aividing the nodes into b
blocks — the first block consisting of the first ay ui's

together with the first a vi's, the second block consisting of

1

's together with the next a, v,'s, etc. — and

the next a 2

- ¥y

then adding edges (in addition to the four pendant edges) according

to the following rules:
if {ui,vi} is a block it is also an edpge;

ir {ui’u1+l’vi’vi+l} is a block then {”i’vi+1} and

fu1+1,vi} are edges.
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An example is shown below.

(Figure 18 is to be inserted here)

The 8-ladder L(l,2,2,1,?)

Note that
(14) two k-ladders La and Lz are isomorphic if and only if
the sequences a and a are equal or one 1s the reverse of the
other.

With the aid of (11)-(14) we can count the number of
isomorphism types of minimum (d,2,3)-graphs. Let r =d - 3.
Then it 1s not hard to verify that there are

s(r) + 3(£(r) - s(r)) = 2s(r) + 3r(r)
types of minimum (d,2,3)-graphs with two small ends,
f(r - 1)
types with one small end and one forked end, and
Ak &
-2—5(1" - 2) + é-f(r " 2)
types with two forked ends. Hence the total number of types is
the sum of
e o
t= z8(r) + 38(r - 2)
and
1 p i S il o S S
F(£f(r)+f(r-1)) + 5(f(r-1) + f(r-2)) = 5f(r+l) + =f(r) = 3f(r+2) = =f(a-
2 - R 2 2 2 2
When r 1s even it follows from (12) that

d
2t = £(5+1) + £(552 + 1) = r(fH2) = £(3FL) = p(2dlo{=1) 3,

and when r 1s odd it follows from (13) that
d
2t = £(55 ) - f(-ii) = f(r+l) - f(ggé) = p(2d=1-(=1) "3,
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